import argparse
import wandb
import time
import numpy as np
import random
import uuid
import torch
import torch.nn as nn
import torch.optim as optim
import atexit

from torchviz import make_dot, make_dot_from_trace
from AimbotEnv import Aimbot
from tqdm import tqdm
from enum import Enum
from torch.distributions.normal import Normal
from torch.distributions.categorical import Categorical
from distutils.util import strtobool
from torch.utils.tensorboard import SummaryWriter
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.side_channel.side_channel import (
    SideChannel,
    IncomingMessage,
    OutgoingMessage,
)
from typing import List

bestReward = -1

DEFAULT_SEED = 9331
ENV_PATH = "../Build/Build-ParallelEnv-Target-OffPolicy-SingleStack-SideChannel-EndReward-Easy-V2.7-FreeOnly-NormalMapSize/Aimbot-ParallelEnv"
SIDE_CHANNEL_UUID = uuid.UUID("8bbfb62a-99b4-457c-879d-b78b69066b5e")
WAND_ENTITY = "koha9"
WORKER_ID = 2
BASE_PORT = 1111

# max round steps per agent is 2500/Decision_period, 25 seconds
# !!!check every parameters before run!!!

TOTAL_STEPS = 3150000
BATCH_SIZE = 1024
MAX_TRAINNING_DATASETS = 6000
DECISION_PERIOD = 1
LEARNING_RATE = 5e-4
GAMMA = 0.99
GAE_LAMBDA = 0.95
EPOCHS = 3
CLIP_COEF = 0.11
LOSS_COEF = [1.0, 1.0, 1.0, 1.0] # free go attack defence
POLICY_COEF = [1.0, 1.0, 1.0, 1.0]
ENTROPY_COEF = [0.05, 0.05, 0.05, 0.05]
CRITIC_COEF = [0.5, 0.5, 0.5, 0.5]
TARGET_LEARNING_RATE = 1e-6
FREEZE_VIEW_NETWORK = False

ANNEAL_LEARNING_RATE = True
CLIP_VLOSS = True
NORM_ADV = True
TRAIN = True

SAVE_MODEL = False
WANDB_TACK = False
LOAD_DIR = None
#LOAD_DIR = "../PPO-Model/Aimbot_Target_Hybrid_PMNN_V2_OffPolicy_EndBC_9331_1670986948-freeonly-20/Aimbot_Target_Hybrid_PMNN_V2_OffPolicy_EndBC_9331_1670986948_0.7949778.pt"

# public data
class Targets(Enum):
    Free = 0
    Go = 1
    Attack = 2
    Defence = 3
    Num = 4
TARGET_STATE_SIZE = 6
INAREA_STATE_SIZE = 1
TIME_STATE_SIZE = 1
GUN_STATE_SIZE = 1
MY_STATE_SIZE = 4
TOTAL_T_SIZE = TARGET_STATE_SIZE+INAREA_STATE_SIZE+TIME_STATE_SIZE+GUN_STATE_SIZE+MY_STATE_SIZE
BASE_WINREWARD = 999
BASE_LOSEREWARD = -999
TARGETNUM= 4
ENV_TIMELIMIT = 30
RESULT_BROADCAST_RATIO = 1/ENV_TIMELIMIT
TotalRounds = {"Free":0,"Go":0,"Attack":0}
WinRounds = {"Free":0,"Go":0,"Attack":0}

# !!!SPECIAL PARAMETERS!!!
# change it while program is finished
using_targets_num = 3


def parse_args():
    # fmt: off
    # pytorch and environment parameters
    parser = argparse.ArgumentParser()
    parser.add_argument("--seed", type=int, default=DEFAULT_SEED,
                        help="seed of the experiment")
    parser.add_argument("--path", type=str, default=ENV_PATH,
                        help="enviroment path")
    parser.add_argument("--workerID", type=int, default=WORKER_ID,
                        help="unity worker ID")
    parser.add_argument("--baseport", type=int, default=BASE_PORT,
                        help="port to connect to Unity environment")
    parser.add_argument("--lr", type=float, default=LEARNING_RATE,
                        help="the learning rate of optimizer")
    parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
                        help="if toggled, cuda will be enabled by default")
    parser.add_argument("--total-timesteps", type=int, default=TOTAL_STEPS,
                        help="total timesteps of the experiments")

    # model parameters
    parser.add_argument("--train",type=lambda x: bool(strtobool(x)), default=TRAIN, nargs="?", const=True,
                        help="Train Model or not")
    parser.add_argument("--freeze-viewnet", type=lambda x: bool(strtobool(x)), default=FREEZE_VIEW_NETWORK, nargs="?", const=True,
                        help="freeze view network or not")
    parser.add_argument("--datasetSize", type=int, default=MAX_TRAINNING_DATASETS,
                        help="training dataset size,start training while dataset collect enough data")
    parser.add_argument("--minibatchSize", type=int, default=BATCH_SIZE,
                        help="nimi batch size")
    parser.add_argument("--epochs", type=int, default=EPOCHS,
                        help="the K epochs to update the policy")
    parser.add_argument("--annealLR", type=lambda x: bool(strtobool(x)), default=ANNEAL_LEARNING_RATE, nargs="?", const=True,
                        help="Toggle learning rate annealing for policy and value networks")
    parser.add_argument("--wandb-track", type=lambda x: bool(strtobool(x)), default=WANDB_TACK, nargs="?", const=True,
                        help="track on the wandb")
    parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=SAVE_MODEL, nargs="?", const=True,
                        help="save model or not")
    parser.add_argument("--wandb-entity", type=str, default=WAND_ENTITY,
                        help="the entity (team) of wandb's project")
    parser.add_argument("--load-dir", type=str, default=LOAD_DIR,
                        help="load model directory")
    parser.add_argument("--decision-period", type=int, default=DECISION_PERIOD,
                        help="the number of steps to run in each environment per policy rollout")
    parser.add_argument("--result-broadcast-ratio", type=float, default=RESULT_BROADCAST_RATIO,
                        help="broadcast result when win round is reached,r=result-broadcast-ratio*remainTime")

    # GAE loss
    parser.add_argument("--gae", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
                        help="Use GAE for advantage computation")
    parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=NORM_ADV, nargs="?", const=True,
                        help="Toggles advantages normalization")
    parser.add_argument("--gamma", type=float, default=GAMMA,
                        help="the discount factor gamma")
    parser.add_argument("--gaeLambda", type=float, default=GAE_LAMBDA,
                        help="the lambda for the general advantage estimation")
    parser.add_argument("--clip-coef", type=float, default=CLIP_COEF,
                        help="the surrogate clipping coefficient")
    parser.add_argument("--policy-coef", type=float, default=POLICY_COEF,
                        help="coefficient of the policy")
    parser.add_argument("--ent-coef", type=float, default=ENTROPY_COEF,
                        help="coefficient of the entropy")
    parser.add_argument("--critic-coef", type=float, default=CRITIC_COEF,
                        help="coefficient of the value function")
    parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=CLIP_VLOSS, nargs="?", const=True,
                        help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
    parser.add_argument("--max-grad-norm", type=float, default=0.5,
                        help="the maximum norm for the gradient clipping")
    parser.add_argument("--target-kl", type=float, default=None,
                        help="the target KL divergence threshold")
    # fmt: on
    args = parser.parse_args()
    return args


def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
    torch.nn.init.orthogonal_(layer.weight, std)
    torch.nn.init.constant_(layer.bias, bias_const)
    return layer


class PPOAgent(nn.Module):
    def __init__(self, env: Aimbot,targetNum:int):
        super(PPOAgent, self).__init__()
        self.targetNum = targetNum
        self.stateSize = env.unity_observation_shape[0]
        self.agentNum = env.unity_agent_num
        self.targetSize = TARGET_STATE_SIZE
        self.timeSize = TIME_STATE_SIZE
        self.gunSize = GUN_STATE_SIZE
        self.myStateSize = MY_STATE_SIZE
        self.raySize = env.unity_observation_shape[0] - TOTAL_T_SIZE
        self.nonRaySize = TOTAL_T_SIZE
        self.head_input_size = env.unity_observation_shape[0] - self.targetSize-self.timeSize-self.gunSize# except target state input

        self.discrete_size = env.unity_discrete_size
        self.discrete_shape = list(env.unity_discrete_branches)
        self.continuous_size = env.unity_continuous_size

        self.viewNetwork = nn.Sequential(
            layer_init(nn.Linear(self.raySize, 200)),
            nn.Tanh()
        )
        self.targetNetworks = nn.ModuleList([nn.Sequential(
            layer_init(nn.Linear(self.nonRaySize, 100)),
            nn.Tanh()
            )for i in range(targetNum)])
        self.middleNetworks = nn.ModuleList([nn.Sequential(
            layer_init(nn.Linear(300,200)),
            nn.Tanh()
            )for i in range(targetNum)])
        self.actor_dis = nn.ModuleList([layer_init(nn.Linear(200, self.discrete_size), std=0.5) for i in range(targetNum)])
        self.actor_mean = nn.ModuleList([layer_init(nn.Linear(200, self.continuous_size), std=0.5) for i in range(targetNum)])
        # self.actor_logstd = nn.ModuleList([layer_init(nn.Linear(200, self.continuous_size), std=1) for i in range(targetNum)])
        # self.actor_logstd = nn.Parameter(torch.zeros(1, self.continuous_size))
        self.actor_logstd = nn.ParameterList([nn.Parameter(torch.zeros(1,self.continuous_size))for i in range(targetNum)]) # nn.Parameter(torch.zeros(1, self.continuous_size))
        self.critic = nn.ModuleList([layer_init(nn.Linear(200, 1), std=1)for i in range(targetNum)])

    def get_value(self, state: torch.Tensor):
        target = state[:,0].to(torch.int32) # int
        thisStateNum = target.size()[0]
        viewInput = state[:,-self.raySize:] # all ray input
        targetInput = state[:,:self.nonRaySize]
        viewLayer = self.viewNetwork(viewInput)
        targetLayer = torch.stack([self.targetNetworks[target[i]](targetInput[i]) for i in range(thisStateNum)])
        middleInput = torch.cat([viewLayer,targetLayer],dim = 1)
        middleLayer = torch.stack([self.middleNetworks[target[i]](middleInput[i]) for i in range(thisStateNum)])
        criticV = torch.stack([self.critic[target[i]](middleLayer[i]) for i in range(thisStateNum)]) # self.critic
        return criticV

    def get_actions_value(self, state: torch.Tensor, actions=None):
        target = state[:,0].to(torch.int32) # int
        thisStateNum = target.size()[0]
        viewInput = state[:,-self.raySize:] # all ray input
        targetInput = state[:,:self.nonRaySize]
        viewLayer = self.viewNetwork(viewInput)
        targetLayer = torch.stack([self.targetNetworks[target[i]](targetInput[i]) for i in range(thisStateNum)])
        middleInput = torch.cat([viewLayer,targetLayer],dim = 1)
        middleLayer = torch.stack([self.middleNetworks[target[i]](middleInput[i]) for i in range(thisStateNum)])

        # discrete
        # 递归targets的数量,既agent数来实现根据target不同来选用对应的输出网络计算输出
        dis_logits = torch.stack([self.actor_dis[target[i]](middleLayer[i]) for i in range(thisStateNum)])
        split_logits = torch.split(dis_logits, self.discrete_shape, dim=1)
        multi_categoricals = [Categorical(logits=thisLogits) for thisLogits in split_logits]
        # continuous
        actions_mean = torch.stack([self.actor_mean[target[i]](middleLayer[i]) for i in range(thisStateNum)]) # self.actor_mean(hidden)
        # action_logstd = torch.stack([self.actor_logstd[target[i]](middleLayer[i]) for i in range(thisStateNum)]) # self.actor_logstd(hidden)
        # action_logstd = self.actor_logstd.expand_as(actions_mean) # self.actor_logstd.expand_as(actions_mean)
        action_logstd = torch.stack([torch.squeeze(self.actor_logstd[target[i]],0) for i in range(thisStateNum)])
        # print(action_logstd)
        action_std = torch.exp(action_logstd) # torch.exp(action_logstd)
        con_probs = Normal(actions_mean, action_std)
        # critic
        criticV = torch.stack([self.critic[target[i]](middleLayer[i]) for i in range(thisStateNum)]) # self.critic

        if actions is None:
            if args.train:
                # select actions base on probability distribution model
                disAct = torch.stack([ctgr.sample() for ctgr in multi_categoricals])
                conAct = con_probs.sample()
                actions = torch.cat([disAct.T, conAct], dim=1)
            else:
                # select actions base on best probability distribution
                disAct = torch.stack([torch.argmax(logit, dim=1) for logit in split_logits])
                conAct = actions_mean
                actions = torch.cat([disAct.T, conAct], dim=1)
        else:
            disAct = actions[:, 0 : env.unity_discrete_type].T
            conAct = actions[:, env.unity_discrete_type :]
        dis_log_prob = torch.stack(
            [ctgr.log_prob(act) for act, ctgr in zip(disAct, multi_categoricals)]
        )
        dis_entropy = torch.stack([ctgr.entropy() for ctgr in multi_categoricals])
        return (
            actions,
            dis_log_prob.sum(0),
            dis_entropy.sum(0),
            con_probs.log_prob(conAct).sum(1),
            con_probs.entropy().sum(1),
            criticV,
        )


def GAE(agent, args, rewards, dones, values, next_obs, next_done):
    # GAE
    with torch.no_grad():
        next_value = agent.get_value(next_obs).reshape(1, -1)
        data_size = rewards.size()[0]
        if args.gae:
            advantages = torch.zeros_like(rewards).to(device)
            lastgaelam = 0
            for t in reversed(range(data_size)):
                if t == data_size - 1:
                    nextnonterminal = 1.0 - next_done
                    nextvalues = next_value
                else:
                    nextnonterminal = 1.0 - dones[t + 1]
                    nextvalues = values[t + 1]
                delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
                advantages[t] = lastgaelam = (
                    delta + args.gamma * args.gaeLambda * nextnonterminal * lastgaelam
                )
            returns = advantages + values
        else:
            returns = torch.zeros_like(rewards).to(device)
            for t in reversed(range(data_size)):
                if t == data_size - 1:
                    nextnonterminal = 1.0 - next_done
                    next_return = next_value
                else:
                    nextnonterminal = 1.0 - dones[t + 1]
                    next_return = returns[t + 1]
                returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return
            advantages = returns - values
    return advantages, returns

class AimbotSideChannel(SideChannel):
    def __init__(self, channel_id: uuid.UUID) -> None:
        super().__init__(channel_id)
    def on_message_received(self, msg: IncomingMessage) -> None:
        """
        Note: We must implement this method of the SideChannel interface to
        receive messages from Unity
        """
        thisMessage = msg.read_string()
        # print(thisMessage)
        thisResult = thisMessage.split("|")
        if(thisResult[0] == "result"):
            TotalRounds[thisResult[1]]+=1
            if(thisResult[2] == "Win"):
                WinRounds[thisResult[1]]+=1
            #print(TotalRounds)
            #print(WinRounds)
        elif(thisResult[0] == "Error"):
            print(thisMessage)
	# 发送函数
    def send_string(self, data: str) -> None:
        # send a string toC#
        msg = OutgoingMessage()
        msg.write_string(data)
        super().queue_message_to_send(msg)

    def send_bool(self, data: bool) -> None:
        msg = OutgoingMessage()
        msg.write_bool(data)
        super().queue_message_to_send(msg)

    def send_int(self, data: int) -> None:
        msg = OutgoingMessage()
        msg.write_int32(data)
        super().queue_message_to_send(msg)

    def send_float(self, data: float) -> None:
        msg = OutgoingMessage()
        msg.write_float32(data)
        super().queue_message_to_send(msg)

    def send_float_list(self, data: List[float]) -> None:
        msg = OutgoingMessage()
        msg.write_float32_list(data)
        super().queue_message_to_send(msg)

def broadCastEndReward(rewardBF:list,remainTime:float):
    thisRewardBF = rewardBF
    if (rewardBF[-1]<=-500):
        # print("Lose DO NOT BROAD CAST",rewardBF[-1])
        thisRewardBF[-1] = rewardBF[-1]-BASE_LOSEREWARD
        thisRewardBF = thisRewardBF
    elif (rewardBF[-1]>=500):
        # print("Win! Broadcast reward!",rewardBF[-1])
        thisRewardBF[-1] = rewardBF[-1]-BASE_WINREWARD
        thisRewardBF = (np.asarray(thisRewardBF)+(remainTime*args.result_broadcast_ratio)).tolist()
    else:
        print("!!!!!DIDNT GET RESULT REWARD!!!!!!",rewardBF[-1])
    return torch.Tensor(thisRewardBF).to(device)


if __name__ == "__main__":
    args = parse_args()
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")

    # Initialize environment anget optimizer
    aimBotsideChannel = AimbotSideChannel(SIDE_CHANNEL_UUID);
    env = Aimbot(envPath=args.path, workerID=args.workerID, basePort=args.baseport,side_channels=[aimBotsideChannel])
    if args.load_dir is None:
        agent = PPOAgent(env,TARGETNUM).to(device)
    else:
        agent = torch.load(args.load_dir)
        # freeze 
        if args.freeze_viewnet:
            # freeze the view network
            for p in agent.viewNetwork.parameters():
                p.requires_grad = False
            print("VIEW NETWORK FREEZED")
        print("Load Agent", args.load_dir)
        print(agent.eval())

    optimizer = optim.Adam(agent.parameters(), lr=args.lr, eps=1e-5)

    # Tensorboard and WandB Recorder
    game_name = "Aimbot_Target_Hybrid_PMNN_V2"
    game_type = "OffPolicy_EndBC"
    run_name = f"{game_name}_{game_type}_{args.seed}_{int(time.time())}"
    if args.wandb_track:
        wandb.init(
            project=game_name,
            entity=args.wandb_entity,
            sync_tensorboard=True,
            config=vars(args),
            name=run_name,
            monitor_gym=True,
            save_code=True,
        )

    writer = SummaryWriter(f"runs/{run_name}")
    writer.add_text(
        "hyperparameters",
        "|param|value|\n|-|-|\n%s"
        % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
    )

    @atexit.register
    def save_model():
        # save model while exit
        saveDir = "../PPO-Model/"+ run_name + "_last.pt"
        torch.save(agent, saveDir)
        print("save model to " + saveDir)

    # Trajectory Buffer
    ob_bf = [[] for i in range(env.unity_agent_num)]
    act_bf = [[] for i in range(env.unity_agent_num)]
    dis_logprobs_bf = [[] for i in range(env.unity_agent_num)]
    con_logprobs_bf = [[] for i in range(env.unity_agent_num)]
    rewards_bf = [[] for i in range(env.unity_agent_num)]
    dones_bf = [[] for i in range(env.unity_agent_num)]
    values_bf = [[] for i in range(env.unity_agent_num)]

    # start the game
    total_update_step = using_targets_num * args.total_timesteps // args.datasetSize
    target_steps = [0 for i in range(TARGETNUM)]
    start_time = time.time()
    state, _, done = env.reset()
    # state = torch.Tensor(next_obs).to(device)
    # next_done = torch.zeros(env.unity_agent_num).to(device)

    # initialize empty training datasets
    obs = [torch.tensor([]).to(device) for i in range(TARGETNUM)]  # (TARGETNUM,n,env.unity_observation_size)
    actions = [torch.tensor([]).to(device) for i in range(TARGETNUM)]  # (TARGETNUM,n,env.unity_action_size)
    dis_logprobs = [torch.tensor([]).to(device) for i in range(TARGETNUM)]  # (TARGETNUM,n,1)
    con_logprobs = [torch.tensor([]).to(device) for i in range(TARGETNUM)]  # (TARGETNUM,n,1)
    rewards = [torch.tensor([]).to(device) for i in range(TARGETNUM)]  # (TARGETNUM,n,1)
    values = [torch.tensor([]).to(device) for i in range(TARGETNUM)]  # (TARGETNUM,n,1)
    advantages = [torch.tensor([]).to(device) for i in range(TARGETNUM)]  # (TARGETNUM,n,1)
    returns = [torch.tensor([]).to(device) for i in range(TARGETNUM)]  # (TARGETNUM,n,1)

    vis_graph = make_dot(agent.get_actions_value(
                        torch.Tensor(state).to(device)
                    ), params=dict(agent.named_parameters()))
    vis_graph.view()  # 会在当前目录下保存一个“Digraph.gv.pdf”文件,并在默认浏览器中打开
    
    with torch.onnx.set_training(agent, False):
        trace, _ = torch.jit.get_trace_graph(agent, args=(torch.Tensor(state).to(device),))
    make_dot_from_trace(trace)
    raise
    
    for total_steps in range(total_update_step):
        # discunt learning rate, while step == total_update_step lr will be 0

        if args.annealLR:
            finalRatio = TARGET_LEARNING_RATE/args.lr
            frac = 1.0 - ((total_steps + 1.0) / total_update_step)
            lrnow = frac * args.lr
            optimizer.param_groups[0]["lr"] = lrnow
        else:
            lrnow = args.lr
        print("new episode",total_steps,"learning rate = ",lrnow)


        # MAIN LOOP: run agent in environment
        step = 0
        training = False
        trainQueue = []
        last_reward = [0.for i in range(env.unity_agent_num)]
        while True:
            if step % args.decision_period == 0:
                step += 1
                # Choose action by agent

                with torch.no_grad():
                    # predict actions
                    action, dis_logprob, _, con_logprob, _, value = agent.get_actions_value(
                        torch.Tensor(state).to(device)
                    )
                    value = value.flatten()

                # variable from GPU to CPU
                action_cpu = action.cpu().numpy()
                dis_logprob_cpu = dis_logprob.cpu().numpy()
                con_logprob_cpu = con_logprob.cpu().numpy()
                value_cpu = value.cpu().numpy()
                # Environment step
                next_state, reward, next_done = env.step(action_cpu)

                # save memories
                for i in range(env.unity_agent_num):
                    # save memories to buffers
                    ob_bf[i].append(state[i])
                    act_bf[i].append(action_cpu[i])
                    dis_logprobs_bf[i].append(dis_logprob_cpu[i])
                    con_logprobs_bf[i].append(con_logprob_cpu[i])
                    rewards_bf[i].append(reward[i]+last_reward[i])
                    dones_bf[i].append(done[i])
                    values_bf[i].append(value_cpu[i])
                    remainTime = state[i,TARGET_STATE_SIZE]
                    if next_done[i] == True:
                        # finished a round, send finished memories to training datasets
                        # compute advantage and discounted reward
                        #print(i,"over")
                        roundTargetType = int(state[i,0])
                        thisRewardsTensor = broadCastEndReward(rewards_bf[i],remainTime)
                        adv, rt = GAE(
                            agent,
                            args,
                            thisRewardsTensor,
                            torch.Tensor(dones_bf[i]).to(device),
                            torch.tensor(values_bf[i]).to(device),
                            torch.tensor(next_state[i]).to(device).unsqueeze(0),
                            torch.Tensor([next_done[i]]).to(device),
                        )
                        # send memories to training datasets
                        obs[roundTargetType] = torch.cat((obs[roundTargetType], torch.tensor(ob_bf[i]).to(device)), 0)
                        actions[roundTargetType] = torch.cat((actions[roundTargetType], torch.tensor(act_bf[i]).to(device)), 0)
                        dis_logprobs[roundTargetType] = torch.cat(
                            (dis_logprobs[roundTargetType], torch.tensor(dis_logprobs_bf[i]).to(device)), 0
                        )
                        con_logprobs[roundTargetType] = torch.cat(
                            (con_logprobs[roundTargetType], torch.tensor(con_logprobs_bf[i]).to(device)), 0
                        )
                        rewards[roundTargetType] = torch.cat((rewards[roundTargetType], thisRewardsTensor), 0)
                        values[roundTargetType] = torch.cat((values[roundTargetType], torch.tensor(values_bf[i]).to(device)), 0)
                        advantages[roundTargetType] = torch.cat((advantages[roundTargetType], adv), 0)
                        returns[roundTargetType] = torch.cat((returns[roundTargetType], rt), 0)

                        # clear buffers
                        ob_bf[i] = []
                        act_bf[i] = []
                        dis_logprobs_bf[i] = []
                        con_logprobs_bf[i] = []
                        rewards_bf[i] = []
                        dones_bf[i] = []
                        values_bf[i] = []
                        print(f"train dataset {Targets(roundTargetType).name} added:{obs[roundTargetType].size()[0]}/{args.datasetSize}")

                for i in range(TARGETNUM):
                    if obs[i].size()[0] >= args.datasetSize:
                        # start train NN
                        trainQueue.append(i)
                if(len(trainQueue)>0):
                    break
                state, done = next_state, next_done
            else:
                step += 1
                # skip this step use last predict action
                next_state, reward, next_done = env.step(action_cpu)
                # save memories
                for i in range(env.unity_agent_num):
                    if next_done[i] == True:
                        #print(i,"over???")
                        # save memories to buffers
                        ob_bf[i].append(state[i])
                        act_bf[i].append(action_cpu[i])
                        dis_logprobs_bf[i].append(dis_logprob_cpu[i])
                        con_logprobs_bf[i].append(con_logprob_cpu[i])
                        rewards_bf[i].append(reward[i])
                        dones_bf[i].append(done[i])
                        values_bf[i].append(value_cpu[i])
                        remainTime = state[i,TARGET_STATE_SIZE]
                        # finished a round, send finished memories to training datasets
                        # compute advantage and discounted reward
                        roundTargetType = int(state[i,0])
                        thisRewardsTensor = broadCastEndReward(rewards_bf[i],remainTime)
                        adv, rt = GAE(
                            agent,
                            args,
                            thisRewardsTensor,
                            torch.Tensor(dones_bf[i]).to(device),
                            torch.tensor(values_bf[i]).to(device),
                            torch.Tensor(next_state[i]).to(device).unsqueeze(dim = 0),
                            torch.Tensor([next_done[i]]).to(device),
                        )
                        # send memories to training datasets
                        obs[roundTargetType] = torch.cat((obs[roundTargetType], torch.tensor(ob_bf[i]).to(device)), 0)
                        actions[roundTargetType] = torch.cat((actions[roundTargetType], torch.tensor(act_bf[i]).to(device)), 0)
                        dis_logprobs[roundTargetType] = torch.cat(
                            (dis_logprobs[roundTargetType], torch.tensor(dis_logprobs_bf[i]).to(device)), 0
                        )
                        con_logprobs[roundTargetType] = torch.cat(
                            (con_logprobs[roundTargetType], torch.tensor(con_logprobs_bf[i]).to(device)), 0
                        )
                        rewards[roundTargetType] = torch.cat((rewards[roundTargetType], thisRewardsTensor), 0)
                        values[roundTargetType] = torch.cat((values[roundTargetType], torch.tensor(values_bf[i]).to(device)), 0)
                        advantages[roundTargetType] = torch.cat((advantages[roundTargetType], adv), 0)
                        returns[roundTargetType] = torch.cat((returns[roundTargetType], rt), 0)

                        # clear buffers
                        ob_bf[i] = []
                        act_bf[i] = []
                        dis_logprobs_bf[i] = []
                        con_logprobs_bf[i] = []
                        rewards_bf[i] = []
                        dones_bf[i] = []
                        values_bf[i] = []
                        print(f"train dataset {Targets(roundTargetType).name} added:{obs[roundTargetType].size()[0]}/{args.datasetSize}")

                state = next_state
                last_reward = reward
            i += 1

        if args.train:
            meanRewardList = [] # for WANDB
            # loop all tarining queue
            for thisT in trainQueue:
                target_steps[thisT]+=1
                # flatten the batch
                b_obs = obs[thisT].reshape((-1,) + env.unity_observation_shape)
                b_dis_logprobs = dis_logprobs[thisT].reshape(-1)
                b_con_logprobs = con_logprobs[thisT].reshape(-1)
                b_actions = actions[thisT].reshape((-1,) + (env.unity_action_size,))
                b_advantages = advantages[thisT].reshape(-1)
                b_returns = returns[thisT].reshape(-1)
                b_values = values[thisT].reshape(-1)
                b_size = b_obs.size()[0]
                # Optimizing the policy and value network
                b_inds = np.arange(b_size)
                # clipfracs = []
                for epoch in range(args.epochs):
                    print(epoch,end="")
                    # shuffle all datasets
                    np.random.shuffle(b_inds)
                    for start in range(0, b_size, args.minibatchSize):
                        print(".",end="")
                        end = start + args.minibatchSize
                        mb_inds = b_inds[start:end]
                        if(np.size(mb_inds)<=1):
                            break
                        mb_advantages = b_advantages[mb_inds]

                        # normalize advantages
                        if args.norm_adv:
                            mb_advantages = (mb_advantages - mb_advantages.mean()) / (
                                mb_advantages.std() + 1e-8
                            )

                        (
                            _,
                            new_dis_logprob,
                            dis_entropy,
                            new_con_logprob,
                            con_entropy,
                            newvalue,
                        ) = agent.get_actions_value(b_obs[mb_inds], b_actions[mb_inds])
                        # discrete ratio
                        dis_logratio = new_dis_logprob - b_dis_logprobs[mb_inds]
                        dis_ratio = dis_logratio.exp()
                        # continuous ratio
                        con_logratio = new_con_logprob - b_con_logprobs[mb_inds]
                        con_ratio = con_logratio.exp()

                        """
                        # early stop
                        with torch.no_grad():
                            # calculate approx_kl http://joschu.net/blog/kl-approx.html
                            old_approx_kl = (-logratio).mean()
                            approx_kl = ((ratio - 1) - logratio).mean()
                            clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
                        """

                        # discrete Policy loss
                        dis_pg_loss_orig = -mb_advantages * dis_ratio
                        dis_pg_loss_clip = -mb_advantages * torch.clamp(
                            dis_ratio, 1 - args.clip_coef, 1 + args.clip_coef
                        )
                        dis_pg_loss = torch.max(dis_pg_loss_orig, dis_pg_loss_clip).mean()
                        # continuous Policy loss
                        con_pg_loss_orig = -mb_advantages * con_ratio
                        con_pg_loss_clip = -mb_advantages * torch.clamp(
                            con_ratio, 1 - args.clip_coef, 1 + args.clip_coef
                        )
                        con_pg_loss = torch.max(con_pg_loss_orig, con_pg_loss_clip).mean()

                        # Value loss
                        newvalue = newvalue.view(-1)
                        if args.clip_vloss:
                            v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
                            v_clipped = b_values[mb_inds] + torch.clamp(
                                newvalue - b_values[mb_inds],
                                -args.clip_coef,
                                args.clip_coef,
                            )
                            v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
                            v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
                            v_loss = 0.5 * v_loss_max.mean()
                        else:
                            v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()

                        # total loss
                        entropy_loss = dis_entropy.mean() + con_entropy.mean()
                        loss = (
                            dis_pg_loss * POLICY_COEF[thisT]
                            + con_pg_loss * POLICY_COEF[thisT]
                            + entropy_loss * ENTROPY_COEF[thisT]
                            + v_loss * CRITIC_COEF[thisT]
                        )*LOSS_COEF[thisT]

                        if(torch.isnan(loss).any()):
                            print("LOSS Include NAN!!!")
                            if(torch.isnan(dis_pg_loss.any())):
                                print("dis_pg_loss include nan")
                            if(torch.isnan(con_pg_loss.any())):
                                print("con_pg_loss include nan")
                            if(torch.isnan(entropy_loss.any())):
                                print("entropy_loss include nan")
                            if(torch.isnan(v_loss.any())):
                                print("v_loss include nan")
                            raise

                        optimizer.zero_grad()
                        loss.backward()
                        # Clips gradient norm of an iterable of parameters.
                        nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
                        optimizer.step()

                    """
                    if args.target_kl is not None:
                        if approx_kl > args.target_kl:
                            break
                    """
                # record mean reward before clear history
                print("done")
                targetRewardMean = np.mean(rewards[thisT].to("cpu").detach().numpy().copy())
                meanRewardList.append(targetRewardMean)
                targetName = Targets(thisT).name

                # clear this target trainning set buffer
                obs[thisT] = torch.tensor([]).to(device)
                actions[thisT] = torch.tensor([]).to(device)
                dis_logprobs[thisT] = torch.tensor([]).to(device)
                con_logprobs[thisT] = torch.tensor([]).to(device)
                rewards[thisT] = torch.tensor([]).to(device)
                values[thisT] = torch.tensor([]).to(device)
                advantages[thisT] = torch.tensor([]).to(device)
                returns[thisT] = torch.tensor([]).to(device)

                # record rewards for plotting purposes
                writer.add_scalar(f"Target{targetName}/value_loss", v_loss.item(), target_steps[thisT])
                writer.add_scalar(f"Target{targetName}/dis_policy_loss", dis_pg_loss.item(), target_steps[thisT])
                writer.add_scalar(f"Target{targetName}/con_policy_loss", con_pg_loss.item(), target_steps[thisT])
                writer.add_scalar(f"Target{targetName}/total_loss", loss.item(), target_steps[thisT])
                writer.add_scalar(f"Target{targetName}/entropy_loss", entropy_loss.item(), target_steps[thisT])
                writer.add_scalar(f"Target{targetName}/Reward", targetRewardMean, target_steps[thisT])
                writer.add_scalar(f"Target{targetName}/WinRatio", WinRounds[targetName]/TotalRounds[targetName], target_steps[thisT])
                print(f"episode over Target{targetName} mean reward:", targetRewardMean)
            TotalRewardMean = np.mean(meanRewardList)
            writer.add_scalar("GlobalCharts/TotalRewardMean", TotalRewardMean, total_steps)
            writer.add_scalar("GlobalCharts/learning_rate", optimizer.param_groups[0]["lr"], total_steps)
            # New Record!
            if TotalRewardMean > bestReward and args.save_model:
                bestReward = targetRewardMean
                saveDir = "../PPO-Model/" + run_name +"_"+ str(TotalRewardMean) + ".pt"
                torch.save(agent, saveDir)

    saveDir = "../PPO-Model/"+ run_name + "_last.pt"
    torch.save(agent, saveDir)
    env.close()
    writer.close()